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Abstract—Microgrids are subsystems of the distribution grid
which comprises small generation capacities, storage devices
and controllable loads, which can operate either connected or
isolated from the utility grid. This paper studies the microgrid
economic scheduling, i.e. the problem of optimize microgrid
operations to fulfil a time-varying energy demand and operational
constraints while minimizing the costs of internal production and
imported energy from the utility grid. The problem is posed as
a mixed-integer linear programming model. The key difference
in the proposed modeling approach is that no complex heuristics
or decompositions are used; the full model is formulated and
solved in an efficient way by using commercial solvers. This
leads to significant improvements in schedule quality and in
computational burden. A case study of a typical microgrid
is investigated: simulation results show the feasibility and the
effectiveness of the proposed approach.

I. INTRODUCTION

The need to satisfy in sustainable ways the increasing

energy demand requires active energy distribution networks,

i.e. distribution networks with the possibility of bidirectional

power flows controlling a combination of Distributed En-

ergy Resources (DERs), such as distributed generators and

renewable energy devices. Hence, new energy management

systems are needed, able to optimally schedule the distributed

generation in the distribution network. In this scenario, the

microgrid concept is a promising approach. It is an integrated

energy system consisting of interconnected loads and DERs

which can operate in parallel with the grid or in an intentional

island mode [1], [2]. A typical microgrid comprises: storage

units; Distributed Generators (DGs), which are dispatchable

units; Renewable Energy Resources (RESs), which are non

controllable devices; and controllable loads, which can be

curtailed (shed) when it is more convenient. In addition a

microgrid can purchase and sell power to and from its energy

suppliers. The optimization of the microgrid operations is

extremely important in order to cost-efficiently manage its

energy resources [2], [3]. In this paper we tackle the optimal

scheduling of microgrid operations. This problem aims at

minimizing the production costs of the local generators and

the exchange with the utility grid subject to market conditions,

while satisfying a predicted load demand of a certain period

(typically one day) and complex operational constraints, such

as the energy balance, and controllable generators minimum

operation time and minimum stop time. A complete formu-

lation of microgrid economic scheduling problem includes

modeling of storage, demand side policies for controllable

loads (Demand Side Management, DSM), power exchange

with the utility grid. The problem is generally formulated as

a Mixed Integer Nonlinear Problem (MINLP) for which there

is no exact solution technique. Namely, microgrid modeling

needs both continuous (such as storage output) and discrete

(such as on/off states of DGs and DSM-controlled loads)

decision variables, which causes the solution space of the

corresponding optimization problem to be nonconvex, so that

classical mathematical programming techniques cannot be

directly applied. Due to the problem complexity and because

of the large economic benefits that could result from its

improved solution, considerable attention is being devoted

to development of better optimization algorithms and suit-

able modeling frameworks. Moreover studies have suggested

that microgrids can achieve high performance through:(i)

deployment of demand response; (ii) optimal use of storage

devices in order to compensate the physical imbalances; (iii)

applying optimal instead of heuristic-based approaches [4]–

[7]. The proposed approaches are typically either computa-

tionally intensive and not suitable for online applications, or

can produce suboptimal solutions. Most proposed solution

methods utilize heuristic-based methods using priority list,

dynamic programming, Lagrangian relaxation, genetic algo-

rithms, particle swarm optimization, usually in a deterministic

setting [8]–[10]. In a stochastic framework, the authors in [11]

propose an optimization algorithm based on dynamic program-

ming. In the aforementioned work, the optimization problem

stays nonlinear and important features such as minimum up

and down times and demand side programs are neglected.

Therefore it is necessary to find a tractable formulation of

the microgrid operation optimization problem which includes

the specific key features of a microgrid. In this paper we

present a mixed integer linear formulation of the microgrid

economic scheduling. By applying well known linear approx-

imation techniques of nonlinear cost functions and formulating

complex operative constrains as linear constraints, the problem

can be solved very efficiently by standard algorithms [12]–

[14]. Moreover, the possibility to implement load curtailment

programs is also included. Our main contributions are: (i)

the development of a model of the overall microgrid system

adopting a formalized modeling approach; (ii) the formulation

of the microgrid scheduling problem so as it is suitable to be

used in online optimization schemes;(iii) the presentation of
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preliminary simulation results showing the effectiveness of the

proposed optimization routine.

The paper is organized as follows: the microgrid system

and the modeling approach are described in Section II; the

operation optimization is then described in Section III; finally,

in Section IV some simulation results are discussed.

A. Nomenclature

The forecasts, the parameters and the decision variables

used in the proposed formulation are described respectively

in Tables I, II and III.

TABLE I
PARAMETERS

Parameters Description

Ng number of DG units
Nl number of critical loads
Nc number of controllable loads

CDG(P ) fuel consumption cost curve of a DG unit

a1, a2, a3 cost coefficients of CDG(P ) [AC/(kWh)2, AC/kWh, AC]
OM operating and maintenance cost of a DG unit [AC/kWh]
Rmax ramp up limit of a DG unit [kW/h]
Tup minimum up time of a DG unit [h]

Tdown minimum down time of a DG unit [h]

xsb storage ‘physiological’ energy loss
per time step (hour) [kWh]

xb
min

, xb
max minimum, maximum energy level

of the storage unit [kWh]

Cb
max storage power limit [kW]

T g maximum interconnection power flow limit
(at the point of common coupling) [kW]

Pmin, Pmax minimum, maximum power level of a DG unit [kW]

ηc, ηd storage charging, discharging ”efficiencies”
βmin, βmax minimum, maximum allowed curtailment

of a controllable load

cSU , cSD start-up, start-down costs of a DG unit [AC]
Dc preferred power level of a controllable load [kW]
ρc penalty weight on curtailments

We assume a quadratic fuel consumption cost for a DG unit

of the form CDG(P ) = a1P
2 + a2P + a3.

TABLE II
FORECASTS

Forecasts Description

P res sum of power production from RES [kW]
D power level required from a non controllable load [kW]

cP , cS purchasing, selling energy prices [AC/kWh]

TABLE III
DECISION AND LOGICAL VARIABLES

Variables Description

δ off(0)/on(1) state of a DG unit

δb discharging(0)/charging(1) mode of a storage unit
δg exporting(0)/importing(1) mode to/from the utility grid
P power level of a DG unit [kW]

P b power exchanged (positive for charging)
with the storage unit [kW]

P g importing(positive)/exporting(negative) power level
from/to the utility grid [kW]

xb stored energy level [kWh]
β curtailed power percentage

II. SYSTEM DESCRIPTION AND MODELING

Here we briefly describe the key features of the microgrid

architecture considered in this paper and associate a possible

modeling set up with the goal of maintaining the problem

tractable. When the microgrid is in the grid-connected mode,

it can purchase and sell energy from the utility grid. The mi-

crogrid produces the electricity using controllable distributed

generators and renewable energy resources, and energy can

be stored in a storage device. The energy demand comes from

both critical and controllable loads. The optimal use of the

storage unit and the controllable loads can help to keep the

energy balance, in particular during the islanded mode. The

microgrid system comprises continuous time-driven dynamics

of the energy flows and storage units, and event-driven on/off

controllers.

We point out what follows:

• heat recovery capabilities and reactive power are not

considered in the microgrid modeling and problem for-

mulation to limit its complexity. Yet we are aware of

their importance and their incorporation into the proposed

control framework is under current study.

• due to constant sampling time ∆T = tk+1 − tk, there

exists a constant ratio between energy and power at each

interval.

A. Storage Dynamics

We consider the following discrete time model of a storage

unit:

xb(k + 1) = x(k)b + ηP b(k) − xsb, (1)

where

η =

{
ηc, if P b(k) > 0 (charging mode)
ηd, otherwise (discharging mode).

(2)

where typically ηc < 1 and η1 = 1
ηc . We denote by xb(k) the

level of the energy stored at time k (divided by ∆T ) and by

P b(k) the power exchanged with the storing device at time

k. The charging and discharging ”efficiencies” account for the

losses and xsb denotes a constant stored energy degradation in

the sampling interval. If the power exchanged at time k, P b(k),
is greater than zero, this will be charging the storage device,

otherwise the storage device will be discharged. By using the

standard approach described in [15], we introduce a binary

variable δb(k) and an auxiliary variable zb(k) = δb(k)P b(k)
to model the logical conditions provided in Section 4 such as:

P b(k) > 0 ⇐⇒ δb(k) = 1

and

xb(k + 1) =

{
xb(k) + ηcP b(k) − xsb, if δb(k) = 1,

xb(k) + ηdP b(k) − xsb, otherwise.

Then we express the ‘if . . . then’ conditions as mixed integer

linear inequalities. By collecting such inequalities we can

rewrite the storage dynamics and the corresponding constraints
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in the following compact form (the interested reader is referred

to [15] for guiding details):

xb(k + 1) = xb(k) + (ηc − ηd)zb(k) + ηdP b(k) − xsb,

subject to E1
bδb(k) + E2

bzb(k) ≤ E3
bP b(k) + E4

b,
(3)

where the column vectors E1
b,E2

b,E3
b,E4

b are provided in

the Appendix VI.

The balance between energy production and consumption

must be met at each time k, so the following equality constraint

is imposed:

P b(k) =
∑Ng

i=1 Pi(k) + P res(k) + P g(k)

−
∑Nl

j=1 Dj(k) −
∑Nc

h=1[1 − βh(k)]Dc
h(k).

(4)

If we collect all the decision variables in the vector u(k) and

all the known disturbances (obtained by forecasts) in the vector

ŵ(k), we can express the storage level as an affine function

by substituting P b(k) in (3) as follows:

xb(k + 1) = xb(k) + (ηc − ηd)zb(k)

+ ηd [F
′

(k)u(k) + f
′

(k)ŵ(k)] − xsb

(5)

with

u(k) =
[

P
′

(k) P g(k) β
′

(k) δ
′

(k)
]′

∈ R
Nu × {0, 1}Ng ,

ŵ(k) =
[

P res(k) D
′

(k) D
c
′

(k)
]′

∈ R
Nw ,

where Nu = Ng + 1 + Nc, Nw = 1 + Nl + Nc, P(k), δ(k),
D(k), Dc(k) and β(k) are column vectors containing, respec-

tively, all the power levels, the generators off/on states, the

critical demands, the controllable preferred power levels and

the curtailments. We remark that the vector u(k) collects both

the continuous-value and the binary decision variables, and the

vector ŵ(k) collects all the known disturbances (obtained by

forecasts). The vectors F
′

(k) and f
′

(k) are provided in the

Appendix VI.

B. Interaction with the utility grid

When it is grid-connected, the microgrid can sell and

purchase energy from the utility grid. If the power exchanged

with the utility grid at time k, P g(k), has positive sign, energy

is purchased from the utility grid within the sampling time;

otherwise energy is sold to the utility grid.

By following the same procedure outlined above, we intro-

duce a binary variable δg(k) and an auxiliary variables Cg(k)
to model the possibility either to purchase or to sell energy

from/to the utility grid. For the new variables, the following

logical statements must hold:

P g(k) > 0 ⇐⇒ δg(k) = 1

and

Cg(k) =

{
cP (k)P g(k) if δg(k) = 1,

cS(k)P g(k) otherwise.

Again, we express the ‘if . . . then’ conditions as mixed integer

linear inequalities. Then, the purchasing/selling microgrid be-

havior can be expressed by the following mixed integer linear

inequalities in a compact form:

E1
gδg(k) + E2

gCg(k) ≤ E3
g(k)P g(k) + E4

g. (6)

The column vectors E1
g,E2

g,E3
g(k),E4

g are provided in

the Appendix VI. The matrix E3
g(k) is generally time-varying

due to the time varying energy prices. We recall that the

interaction with the utility grid is allowed only when the

microgrid is in the grid-connected mode.

C. Generator operating conditions

The operating constraints, at each sampling time k, on the

minimum amount of time for which a controllable generation

unit must be kept on/off (minimum up/down times) can be

expressed by the following mixed integer linear inequalities

without resorting to any additional variable:

δi(k) ≥ δi(k − τup − 1) − δi(k − τup − 2),
1 − δi(k) ≥ δi(k − τdown − 2) − δi(k − τdown − 1),

(7)

with i = 1, . . . , Ng , τup = 0, . . . ,min(T up
i − 1, k − T

up
i + 2)

and τdown = 0, . . . ,min(T up
i − 1, k − T

up
i + 2).

We also model the DG unit start up and shut down behavior

in order to account for the corresponding costs. For this reason,

two auxiliary variables, SUi(k) and SDi(k) are introduced,

representing respectively the start up and the shut down cost

for the ith DG generation unit at time k. These auxiliary

variables must satisfy the following mixed integer linear

constraints:

SUi(k) ≥ cSU
i (k)[δi(k) − δi(k − 1)],

SDi(k) ≥ cSD
i (k)[δi(k − 1) − δi(k)],

SUi(k) ≥ 0,

SDi(k) ≥ 0,

(8)

with i = 1, . . . , Ng .

D. Loads

We consider two types of loads:

• critical loads, i.e. demand levels related to essential

processes that must be always met;

• controllable loads, i.e. loads that can be reduced or shed

during supply constraints or emergency situations (e.g.,

standby devices, day-time lighting).

In demand response programs the customers specify level of

curtailment of the controllable loads. The controllable loads

have a preferred level, but their magnitude is flexible so

that the demand level can be lowered when it is convenient

or necessary (e.g., in islanded mode). This leads to users’

discomfort, hence a certain cost is associated with the load

curtailment/shedding (a penalty for the microgrid).

We define a continuous-valued variable, 0 ≤ β(k) ≤ 1,

associated to each controllable load c and to each sampling

time k. This variable represents the percentage of preferred

power level to be curtailed at time k in order to keep the

microgrid operations feasible (e.g., in islanded mode) or more

economically convenient. If no curtailment is allowed at a

certain time k̂, an equality constraint can be set, β(k̂) = 0.
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III. PROBLEM FORMULATION

In this section we define the microgrid economic scheduling

problem. At every time step, the microgrid scheduler must take

high level decisions about:

• when should each generation unit be started and stopped

(Unit Commitment);

• how much should each unit generate to meet this load at

minimum cost (Economic Dispatch);

• when should the storage device be charged or discharged;

• when and how much energy should be purchased or sold

to the utility grid (when the microgrid is in the grid-

connected mode);

• curtailment schedule (which controllable loads must be

shed/curtailed and when);

• how much energy has to be stored.

In order to formulate the microgrid scheduling problem, we

next define the cost function associated with the MILP.

A. Cost Function

Microgrid economic optimization is achieved by designing

the decision variables so that a cost functional representing the

operating costs is minimized. Therefore, the cost function, J ,

includes costs associated with energy production and start-

up and shut-down decisions, along with possible earnings

and curtailment penalties. The following cost functional is

minimized:

J :=
T−1∑

k=0

Ng∑

i=1

[CDG
i (Pi(k)) + OMi δi(k) + SUi(k) + SDi(k)]

+ Cgrid(k) + ρc

Nc∑

h=1

βh(k)Dc
h(k),

where k is the current time instant and T is the length of the

prediction horizon. We recall that Cgrid(k) can be negative,

i.e. energy is sold to the utility grid, representing an earning for

the microgrid system. Note that J is a quadratic cost function

due to the presence of the quadratic terms CDG
i (Pi(k)). Ex-

perience has shown that a piecewise affine term, which results

in a mixed integer linear program, is more computationally

efficient than a quadratic one. We therefore approximate every

function CDG
i (Pi(k)) with a convex piecewise affine function,

which provides very similar results, but can be solved via a

mixed integer linear program.

B. Capacity and terminal constraints

To pose the final MILP optimization problem, additional

operational constraints must be met:

|F(k)
′

u(k) + f(k)
′

ŵ(k)| ≤ Cb
max (9a)

xb
min ≤ xb(k) ≤ xb

max (9b)

Pi,min δi(k) ≤ Pi(k) ≤ Pi,max δi(k) (9c)

βh,min ≤ βh(k) ≤ βh,max (9d)

|Pi(k + 1) − Pi(k)| ≤ Ri,max (9e)

with i = 1, . . . , Ng and h = 1, . . . , Nc. The constraints above

model the physical bounds on the storage device (inequalities

(9a) and (9b)), the power flow limits of the DG units (in-

equality (9c)), the bounds on controllable loads curtailments

(inequality (9d)), and their ramp up and ramp down rates

(inequality (9e)). Moreover, the stored energy levels both at

the beginning and at the end of the planning period are usually

assumed to be equal to the 50% of the maximum storage power

limit. Therefore, the following terminal equality constraint

must be enforced:

xb(T ) = xb(0).
(10)

C. Microgrid scheduling problem

The microgrid economic scheduling problem can be stated

as the following finite-horizon optimal control problem:

minJ

subject to

storage model (5);

constraints (6), (7), (8);

constraints (9).

(11)

At the current point in time, an optimal sequence of decisions

is formulated (usually for the 24 hours) based on predictions

of the upcoming demand, production from renewable energy

units and energy prices.

IV. SIMULATION RESULTS

The proposed control strategy is investigated in simulation

on a typical microgrid. This microgrid is in a grid-connected

mode and comprises four DG units and photovoltaic panels.

An energy storage is included, which is bounded between 10
kWh and 100 kWh and the maximal charge and discharge

power are respectively 100 kW and −100 kW. Tables IV

and V describe the DG units parameters. We choose a

TABLE IV
GENERATOR PARAMETERS

DG unit Pmin Pmax a1 a2 a3

Unit 1 6 30 0.00637 0.248 4.011
Unit 2 16.4 82 0.004209 0.2304 3.428
Unit 3 16 80 0.00209 0.2254 3.428
Unit 4 12.3 62 0.003026 0.2278 5.722

TABLE V
GENERATOR PARAMETERS

DG unit T up T down Rmax OM cSU cSD

Unit 1 4 4 30 0.09 4 4
Unit 2 2 2 60 0.05 2 2
Unit 3 4 4 60 0.09 3 3
Unit 4 2 2 50 0.08 3 3

sampling time of one hour. Simulations are performed over

one day. Examples of daily spot prices and renewable power

production profiles employed in the optimization routine are

depicted respectively in Figure 2 and Figure 1. The microgrid
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is connected to the utility grid, so energy can be bought or

sold. We consider the general case of a microgrid that disposes

of a controllable load which may be reduced up to a limit

without having to feed it afterwards. The upper and lower

bounds on the allowed curtailments can be set by bilateral

contracts. In particular, the microgrid is requested to reduce

its controllable load preferred level in some given times of the

day (from 10 am to 16 pm); the reduction percentage is upper

bounded by a value varying from 10% to 50%. Curtailments

are usually penalized since they lead to user discomfort; so

they are not performed unless strictly convenient or necessary.

The penalty factor on the curtailments, ρ, is set to 0.7. The

Figures 4, 5 and 3 depict, respectively, the energy stored,

the exchanged power with the utility grid and the DG unit

power production obtain by the MILP optimization routine.

It is shown that, starting from time 7, the MILP scheduler

decides to turn on the DG units in order to meet the demand

at minimum generation costs. In addition, the produced power

is meaningfully increased at the times when there is both

the highest RES power production and the highest demanded

power (about from 10 am to 14 pm). For this reason, the

storage device is kept at its maximum level during the previous

hours and the most convenient amount of energy is bought

from the utility grid. The RES power production is utilized

either to charge the storage, or to fulfil the demand or to sell

energy to the utility grid. For instance, at time 9, the scheduler

deems that the best decision to make is to further increase the

power production of the DG units and to utilize the RES power

production both to fulfill the demand and to sell energy to the

utility grid. By doing this, the storage level can be kept at its

maximum in order to support the upcoming higher demanded

power. At hour 13, the DG units still produce a significant

amount of power. The power from the controllable and RES

units and the power discharged from the storage device (which

is kept at its minimum level this time), can satisfy the demand;

the power surplus can be then sold to the utility grid. Since the

penalty with ρ is set to 0.7, the curtailments are not performed

all the times when they are allowed, yielding only the 4.2%
total demand peak reduction. The demanded power peak can

be further reduced by decreasing the parameter ρ; this comes

at a price of a lower user comfort.

We use ILOG’s CPLEX 11.0 [16] to solve the MILP problems,

which are known to be are NP-complete. CPLEX is an efficient

solver based on the branch-and-bound techniques [12], [17].

The main advantage of the branch and bound method is

that, when it terminates, the solution is known to be globally

optimal. The proposed MILP optimization problem is suitable

for online applications; namely, in the case study reported

above, the MILP problem is solved in 4.24s, a time much

shorter than the sampling time of one hour. This can also

mean that the sampling time could be reduced at the cost of

a negligible computational bigger effort.

V. CONCLUSIONS AND FUTURE STEPS

In the paper we proposed a novel mixed integer linear

approach on modeling and optimization of microgrids. We
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Fig. 1. RES power flows over 24 hours.
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Fig. 2. Spot energy prices over 24 hours.

bring into account unit commitment, economic dispatch, en-

ergy storage, sale and purchase of energy to/from the main

grid, curtailment schedule. We assume perfect knowledge of

the microgrid state, renewable resources production, future

loads, and so on, which is useful to solve the optimization

problem. The authors will apply the algorithms here described

to an experimental laboratory plant and may be able to include

experimental data in the final version of the paper. We are

currently studying realistic and effective stochastic approaches

to cope with inherent uncertainty due to RES production,

energy demand and prices. Moreover, future studies will

include the reactive power management.

VI. APPENDIX

E
b
1

′

= [ Cb
−(Cb+ε) Cb Cb

−Cb
−Cb ]

E
b
2

′

= E
g
2

′

= [ 0 0 1 −1 1 −1 ]

E
b
3

′

= [ 1 −1 1 −1 0 0 ]

E
b
4

′

= [ Cb
−ε Cb Cb 0 0 ]
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Fig. 3. DG units power production over 24 hours.
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E
g
1

′

= [ T g
−(T g+ε) T g T g

−T g
−T g ]

E
g
3

′

(k) = [ 1 −1 cP (k) −cP (k) cS(k) −cS(k) ]

E
g
4

′

= [ T g
−ε T g T g 0 0 ]

where ε is a small tolerance (typically the machine preci-

sion) needed to transform a strict inequality constraint into

a nonstrict inequality, since in MILP solving algorithm only

nonstrict inequalities can be handled [15].

F
′

(k) =
[

1...1
︸︷︷︸

Ng

Dc
1
(k) ... Dc

Nc(k) 0...0
︸︷︷︸

Ng

]

f
′

(k) = [ 1 −D1(k) ... −DNl(k) −Dc
1
(k) ... −Dc

Nc(k) ]
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